17 research outputs found

    The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis

    Full text link
    BACKGROUND: Some evidence suggests that heart rate variability (HRV) biofeedback might be an effective way to treat anxiety and stress symptoms. To examine the effect of HRV biofeedback on symptoms of anxiety and stress, we conducted a meta-analysis of studies extracted from PubMed, PsycINFO and the Cochrane Library. METHODS: The search identified 24 studies totaling 484 participants who received HRV biofeedback training for stress and anxiety. We conducted a random-effects meta-analysis. RESULTS: The pre-post within-group effect size (Hedges' g) was 0.81. The between-groups analysis comparing biofeedback to a control condition yielded Hedges' g = 0.83. Moderator analyses revealed that treatment efficacy was not moderated by study year, risk of study bias, percentage of females, number of sessions, or presence of an anxiety disorder. CONCLUSIONS: HRV biofeedback training is associated with a large reduction in self-reported stress and anxiety. Although more well-controlled studies are needed, this intervention offers a promising approach for treating stress and anxiety with wearable devices

    The role of the individual in the coming era of process-based therapy

    Get PDF
    For decades the development of evidence-based therapy has been based on experimental tests of protocols designed to impact psychiatric syndromes. As this paradigm weakens, a more process-based therapy approach is rising in its place, focused on how to best target and change core biopsychosocial processes in specific situations for given goals with given clients. This is an inherently more idiographic question than has normally been at issue in evidence-based therapy over the last few decades. In this article we explore methods of assessment and analysis that can integrate idiographic and nomothetic approaches in a process-based era.Accepted manuscrip

    Psychometric properties of the Liebowitz Social Anxiety Scale in a large cross-cultural Spanish and Portuguese speaking sample

    Get PDF
    [EN]Two groups of participants were included: a non-clinical sample involving 31,243 community subjects and a clinical sample comprising 529 patients with a diagnosis of social anxiety disorder (SAD). Exploratory factor analysis (EFA), confirmatory factor analysis (CFA) and exploratory structural equation modeling (ESEM) were used in order to determine the psychometric properties of the LSAS-SR. EFA identified five factors with eigenvalues greater than 1.00 explaining 50.78% of the cumulative variance. CFA and ESEM supported this 5-factor structure of the LSAS-SR. The factors included: 1) speaking in public; 2) eating/drinking in front of other people; 3) assertive behaviors; 4) working/writing while being observed; and 5) interactions with strangers. Other psychometric properties such as inter-factor correlations, invariance, reliability, and validity of the scale were also foun

    A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings

    Get PDF
    BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments

    A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings.

    Full text link
    BackgroundA composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data.MethodsWe assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low-glucose and low-glucose hypoglycemia; very high-glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation.ResultsThe analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals.ConclusionThe GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments
    corecore